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Abstract
Although mankind stands to obtain great benefit from nanotechnology,
it is important to consider the potential health impacts of nanomateri-
als (NMs). This consideration has launched the field of nanotoxicology,
which is charged with assessing toxicological potential as well as pro-
moting safe design and use of NMs. Although no human ailments have
been ascribed to NMs thus far, early experimental studies indicate that
NMs could initiate adverse biological responses that can lead to toxi-
cological outcomes. One of the principal mechanisms is the generation
of reactive oxygen species and oxidant injury. Because oxidant injury is
also a major mechanism by which ambient ultrafine particles can in-
duce adverse health effects, it is useful to consider the lessons learned
from studying ambient particles. This review discusses the toxicologi-
cal potential of NMs by comparing the possible injury mechanisms and
adverse health effects of engineered and ambient ultrafine particles.
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Nanomaterials
(NMs): materials
ranging from 1 to
100 nm in at least one
dimension

NP: nanoparticle

UFP: (ambient)
ultrafine particle

DEP: diesel exhaust
particle

Nanotoxicology:
study of toxicity
induced by
nanomaterials

Reactive oxygen
species (ROS):
include oxygen species
that contain one or
more unpaired
electrons, singlet
oxygen, and organic or
inorganic peroxides;
highly reactive

Oxidative stress: a
condition of decreased
oxidant defense or
increased oxidant
production that
exceeds biological
system’s ability to
neutralize them

INTRODUCTION

The sale of products utilizing nanotechnol-
ogy could top an estimated $1 trillion per
year by 2015. Nanotechnology is moving at a
rapid global pace, often with a short time win-
dow between the actual date of discovery and
the point at which new inventions are com-
mercialized. According to the Nanotechnology
Consumer Products Inventory, more than 600
self-claimed nanotechnology products are cur-
rently being produced by 322 companies in
20 countries (47). Nanomaterials (NMs) with
novel physicochemical properties are often be-
ing used to improve the functionality of new
commercial products. Examples of such prod-
ucts are sunscreens, paints, cosmetics, clothing,
building materials, electronics, and personal
care products. Although these products benefit
the users and the economy, increased exposure
of nanotechnology researchers, workers, and
consumers to potentially hazardous materials
could cause adverse health effects. Workers in-
volved in manufacturing, shipping, or handling
of nanoparticles (NPs) are probably already be-
ing exposed to some of the materials that are
produced in bulk or powder form. In addition
to exposing workers through occupational en-
counters, the use of NM for drug therapy, imag-
ing, and gene delivery is also increasing per-
sonal exposure. Although these exposures may
raise some concern, little is known about the
toxic potential of these NMs on human health.
Although much still needs to be learned about
the toxicity of engineered NMs, we are fortu-
nate to start with a clean slate such that there
are no documented incidences of a human or
occupational disease due to an engineered NP
exposure.

Although clinical toxicity by engineered
NM has not been documented thus far, the lit-
erature on particles and fibers, including ultra-
fine particles (UFPs), diesel exhaust particles
(DEPs), quartz, and asbestos (51, 58), indicates
a history of adverse health effects. It is possible
therefore that engineered NPs and fibers may
pose similar hazards: The novel physicochemi-
cal properties of these engineered materials may

introduce new mechanisms of injury and toxi-
cological paradigms. Much could be learned,
however, from the study of inadvertent parti-
cle and fiber exposures. In fact, from an occu-
pational perspective, the study of nanoparticle
toxicity is a mature science that has led to con-
siderable insight into particle and fiber injury.

AMBIENT UFP EFFECTS
AND IMPLICATIONS FOR
ENGINEERED NPs

UFPs are an example of incidental parti-
cles that, when inhaled, can lead to adverse
health outcomes. These particles have an
aerodynamic diameter of <100 nm and are
therefore true NPs. Their small size distin-
guishes them from larger coarse (aerodynamic
diameter <10 μm, PM10) and fine (aerody-
namic diameter <2.5 μm, PM2.5) air pollution
particles. These particles could be derived
from the fossil fuel combustion process, e.g.
diesel exhaust particles (DEP), or through
the condensation of semivolatile substances.
Other examples of respirable nanoscale par-
ticles that can induce toxicological effects
are quartz and mineral dust particles. The
development of the Versatile Aerosol Con-
centration Enrichment Systems (VACES) in
the Southern California Particle Center has
allowed investigators to collect concentrated
ambient particles (CAPs) of various size ranges,
including UFPs (36, 75). Using this technology,
we have conducted comparative toxicological
studies on coarse, fine, and ultrafine particles
obtained from the Los Angeles basin. This
approach has also enhanced research on the
mechanisms of PM injury in animal disease
models. This research suggests that, among
different particle sizes, UFPs are potentially
the most dangerous owing to their small size,
deep penetration, large surface area/volume
ratio, high content of redox cycling organic
chemicals, deep penetration, and high rates of
retention in the lung (36, 50). Moreover, from a
mechanistic perspective, we have demonstrated
that the capability of UFPs to generate reactive
oxygen species (ROS) and oxidative stress is a
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Table 1 Comparison of ambient ultrafine particles (UFPs) and nanoparticles (NPs)a

Particle types UFPs NPs
Source Incidental (combustion) Engineered (controlled synthesis)
Surface area/volume High High
Uniformity Low High (size, shape, functionality)
Organic chemical content High Low
Metal impurities High Varies
ROS generation Yes Varies
Exposure route Inhalation Inhalation, skin, ingestion, injection
Adverse health effects Yes Unknown

aAbbreviation: ROS, reactive oxygen species.

key injury mechanism that relates to proinflam-
matory and proatherogenic effects in the res-
piratory and cardiovascular tracks, respectively
(13, 36, 50, 58, 79).

Some of these principles may be applicable
to engineered NPs. However, UFPs and en-
gineered NPs differ in many aspects such as
sources, composition, homo- or heterogeneity,
size distribution, oxidant potential, and poten-
tial routes of exposure (Table 1). The potential
adverse health effects induced by engineered
NPs are still largely unknown.

AMBIENT UFPs GENERATE
ADVERSE PULMONARY AND
RESPIRATORY EFFECTS

Epidemiological studies show that a sudden
surge in the level of particulate matter (PM) can
be linked to increased cardiorespiratory mor-
bidity and mortality including asthma, chronic
obstructive pulmonary disease (COPD), and
atherosclerosis (4, 12, 64). Although several
mechanisms may explain these adverse health
outcomes, a number of in vitro, in vivo, and
human experiments have shown that cardiovas-
cular and respiratory inflammation resulting
from the induction of oxidative stress could play
an important role in disease pathogenesis (13,
36, 50, 75, 79). DEP emissions and the conden-
sation of semivolatile chemicals and sulfuric
acid are major sources of ambient UFPs. DEPs
have often been used as a model particulate
pollutant to study the injury by which ambient

UFPs may contribute to pulmonary inflamma-
tion and asthma. The experimental evidence
collected to date demonstrates that ROS gen-
eration and the induction of oxidative stress by
organic DEP chemicals may play a role in the
proinflammatory and adjuvant effects of these
particles in the lung (3, 21, 32, 37). Intratracheal
DEP instillation increases polymorphonulear
cell infiltration, mucus production, NO release,
and airway hyperreactivity (AHR) in mice, all
of which play important roles in the patho-
genesis of asthma (20, 25, 40). DEP and UFP
are capable of inducing allergic inflammation
through an impact on the immune system. This
reaction manifests as increased respiratory or
nasal challenge responses to common environ-
mental or experimental allergens in humans
and mice (10, 11, 46). This is also known as
an adjuvant effect and manifests as enhanced
allergen-specific IgE and IL-4 production in
the human nose during combined challenge
with DEPs and the ragweed allergen (11).
Intranasal instillation of DEP also increased
the expression of several chemokines, includ-
ing RANTES, MIP-1α, and MCP-1 (10). In
animal studies, DEPs enhanced ovalbumin
(OVA)-induced eosinophilic airway inflamma-
tion, OVA-specific IgG1 and IgE production,
goblet cell proliferation, and local expression
of Th2 cytokines and chemokines (80). Investi-
gators have reported similar results in animals
receiving intratracheal instillation of the dust
mite allergen, Der f, in the presence of DEPs
(26, 63).
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POTENTIAL ADVERSE
PULMONARY AND RESPIRATORY
EFFECTS OF ENGINEERED NPs

Although the synthesis of engineered NMs
often takes place under controlled gas-phase
conditions, several particle types such as TiO2,
carbon black, zinc oxide, and other metal oxides
are produced in powder form. Thus these par-
ticles could be stirred up in the air during pack-
aging, handling, or accidental spills. Therefore,
some categories of engineered NPs could be in-
haled. Although there are no examples to date
of respiratory pathology in humans due to the
inhalation of engineered NPs, cellular and an-
imal experiments have shown that some types
of NPs are capable of generating proinflamma-
tory and prooxidative effects that could lead to
respiratory pathology (8, 14, 51, 58).

For example, subacute exposure of C57B1/6
mice to 2–5 nm TiO2 NPs caused a moderate
but significant inflammatory response in the
lung within the first two weeks of exposure,
after which the inflammation resolved without
permanent damage (19). The same particle
type has also induced pulmonary emphysema,
macrophage accumulation, alveolar septal
disruption, type II pneumocyte hyperplasia,
and epithelial cell apoptosis in Institute of
Cancer Research (ICR) mice (6). Ultrafine
colloidal silica particles (UFCSi) induce more
severe pulmonary inflammation after intra-
tracheal instillation in ICR mice (29). One
reason for the injury and inflammation could
relate to the large surface area (29). Particle sur-
face area is a more appropriate dose metric than
particle mass or particle number when evaluat-
ing the dose-response relationships in the lung
(58). This notion was confirmed when compar-
ing fine with ultrafine particles for a number
of material types, including TiO2 (14, 58).
However, the issue of NP toxicity goes further
than just surface area and also needs to con-
sider the surface reactivity (65, 74). A study by
Warheit et al. showed that while ultrafine TiO2

particles (P25) with an 80/20 anatase/rutile
content induced sustained inflammation in the
lung, the less reactive rutile form of the same

particle exerted short-term pulmonary effects
(65, 74).

In addition to the proinflammatory effects,
NPs may also exacerbate existing lung diseases
(17, 27). Inoue et al. (27) have demonstrated
that intratracheal administration of 14 nm and
56 nm carbon black NPs induced slight lung in-
flammation and significant pulmonary edema
compared with the phosphate buffered saline
(PBS)-treated mice. However, when 14-nm car-
bon black NPs were coadministered with a
bacterial endotoxin, these particles intensively
aggravated lipopolysaccharide (LPS) -induced
pulmonary inflammation (17, 27). Intratracheal
instillation of Cabosil, a commercially available
NP of amorphous SiO2, caused significantly
increased inflammatory changes in rat lungs
compromised by bleomycin (17). These data
suggest that engineered NPs could potentiate
the effects of other inhaled stimuli (27).

THE PULMONARY TOXICITY
OF CATIONIC NPs: THE
ARDYSTIL SYNDROME

Cationic spray paint particles induced pul-
monary toxicity in an occupational setting in
Spain and Algeria (22). This toxicity, also
known as the Ardystil syndrome, resulted in
seven deaths from acute pulmonary edema in
the 1990s (59). The affected subjects developed
an array of complaints including upper respi-
ratory complaints, nose bleeds, coughing, and
bronchial hyperreactivity. Moreover, some of
the survivors eventually developed pulmonary
fibrosis. Although it was difficult to pinpoint
the exact toxicological component in the spray
paint, epidemiological and toxicological stud-
ies have implicated a polycationic paint com-
ponent as the most likely culprit. Nemery
et al. (23) performed in vitro and in vivo stud-
ies demonstrating that polycationic paint com-
ponents could exert toxic effects in cells and
animals. These toxic effects could be neutral-
ized by polyanions, confirming the presence
of potentially toxic cations (22). These results
serve as a warning that engineered NPs that
carry a positive surface charge may cause similar
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health hazards. This notion is further bolstered
by the increased in vitro cytotoxicity and in
vivo pulmonary toxicity of cationic polystyrene
nanospheres compared with anionic and plain
ones (55, 78). Cationic polystyrene nanospheres
can lead to toxicity in macrophages and ep-
ithelial cells, whereas anionic and nondecorated
nanospheres are nontoxic (78). Intratracheally
instilling the same nanospheres in mice resulted
in increased neutraphil cell counts, protein con-
tent, and lactate dehydrogenase levels in the
bronchoalveolar lavage (BAL) fluid (78).

THE PULMONARY TOXICITY
OF METAL OXIDE NPs: METAL
FUME FEVER

Metal fume fever (MFF) is a clinical syndrome
in welders resulting from the inhalation of
highly concentrated metal oxide particles, most
commonly zinc oxide. Although the inhaled
particles are likely to be in the fine or ultra-
fine range, these are not true engineered NPs.
This syndrome is characterized by the sud-
den onset of a high fever, cough, headache,
nausea, and vomiting. In spite of the dramatic
symptoms, there is often no radiographic evi-
dence of acute or permanent pulmonary dam-
age (16). Although the pathogenesis of MFF
is improperly understood, one suggestion is
that the large-scale release of cytokines by pul-
monary macrophages and other cell types is re-
sponsible for the onset this illness. Some stud-
ies have indicated that the inhalation of ZnO
particles and metal fumes results in significant
increases in polymorphonuclear leukocytes and
lymphocytes in the BAL fluid, in parallel with
increased TNF, IL-6, and IL-8 production (33,
42, 62). ZnO particles also induce cytotoxic-
ity and apoptosis in a variety of different mam-
malian cell types (28, 44), and a recent study in
tissue culture cells has linked this outcome to
the dissolution of the ZnO NPs and the ability
to induce oxidative stress (77). It seems likely
that toxic Zn2+ release could trigger a series of
cellular effects that results in increased cytokine
and chemokine production. However, the rapid
dissolution of the particles may be responsible

for the finding that the clinical symptoms are
of short duration and do not lead to permanent
respiratory damage (5).

THE POTENTIAL PULMONARY
TOXICITY OF CARBON
NANOTUBES: INTERSTITIAL
PULMONARY FIBROSIS
AND MESOTHELIOMA

Carbon nanotubes (CNTs) are engineered
NMs that are produced as single-wall (SWNTs)
or multiwall (MWNTs). Both types of materials
exhibit unique electrical, mechanical, and ther-
mal properties and have many applications in
the electronics, computer, and biomedical fields
and in the aerospace industry. From a toxico-
logical perspective, when the length of these
CNT strands are >20 μm and relatively stiff,
the material may act as an indigestable fiber
that cannot be destroyed in the phagosomes
of macrophages. These CNT fibers could pro-
trude through the cell wall and result in frus-
trated phagocytosis (15), which signifies that
their indestructibility could lead to a pouring of
oxygen radicals. When this process takes place
in the pleural cavity or the peritoneum, it could
result in chronic granulomatous inflammation,
which could be the forerunner of mesothe-
lioma. Two recent studies on MWNTs in mice
suggest the carcinogenic potential of MWNTs
in vivo (60, 72). One study showed that exposing
the mesothelial lining of the peritoneal cavity
to long indigestable MWNTs results in chronic
peritoneal inflammation and formation of gran-
ulomas, whereas short MWNTs did not cause
the same lesion (60). Another study demon-
strates that long MWNT can induce peritoneal
mesothelioma in p53+/− mice, which are very
susceptible to developing the same malignancy
in response to asbestos exposure (72). There is
no evidence to date, however, to indicate that
CNTs cause the same malignancy in humans.
Although the cause of the malignancy in mice
is uncertain, it is possible that the production
of free oxygen radicals and chronic inflamma-
tion could lead to tumor initiation or promotion
(31).
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SWNTs are also capable of inducing in-
terstitial pulmonary reactions in experimental
animals. Shvedova et al. demonstrated that pha-
ryngeal aspiration of SWNTs elicited unusual
pulmonary effects in C57BL/6 mice. This ab-
normality manifests as acute inflammation that
leads to progressive interstitial fibrosis (69).
The progressive fibrosis presented as two dis-
tinct morphologies: (a) SWNT-induced granu-
lomas that were associated with hypertrophied
epithelial cells surrounding SWNT aggregates,
and (b) diffuse interstitial fibrosis and alveo-
lar wall thickening associated with dispersed
SWNT (70). The latter effect is accompanied
by the increased production of the fibrogenic
cytokine transforming growth factor (TGF)-
β1. A recent study by the same group compared
inhalation to pharyngeal aspiration and found
that the former route of exposure was more ef-
fective than aspiration in causing inflammation,
oxidative stress, collagen deposition, and fibro-
sis (70). These reactions were accompanied by
mutations of the K-ras gene locus in the lungs
of these animals (70).

It is appropriate to ask, therefore, whether
CNTs can be inhaled under real-life condi-
tions in humans. CNTs are produced naturally
in the soot created by the burning of various
chemicals and compounds; these naturally oc-
curring CNTs are highly irregular in size and
are mixed with large amount of carbon soot
(73). In contrast, commercial methods for engi-
neered CNT production include high-pressure
carbon monoxide (HiPco), chemical vapor de-
position (CVD), and plasma-enhanced CVD.
Most of these processes take place in a vacuum
or in closed gas-phase environments. There is
no evidence that these production methods lead
to significant occupational exposures. CNT ex-
posures could occur, however, if these materials
are used as drug or gene carriers in the body.
CNTs are also found in car tires, which, ow-
ing to wear and tear, could shed rubber parti-
cles that are inhaled and deposited in the lung.
To date, however, no human pathology or dis-
ease has been ascribed to engineered CNTs and
there are deliberate efforts to make use of the

novel properties of CNTs for therapy or imag-
ing purposes.

We have already discussed the toxicologi-
cal potential of CNT in relation to material
characteristics such as a high aspect ratio, biop-
ersistance, and an indigestibility as well as the
possiblity that this leads to frustrated phagocy-
tosis and chronic inflammation. In vitro toxi-
city studies suggest that ROS production and
the generation of oxidative stress could con-
tribute to material toxicity (30, 68). One reason
for this ROS generation is the presence of metal
impurities, such as iron and copper, which are
used as catalytic agents during the synthesis of
the CNT (30, 68, 69), although extensive CNT
purification eliminates these effects.

When properly functionalized, CNTs can
be used as imaging agents that can be safely ad-
ministered intravenously (66). No toxicity was
observed over a month time period in some of
these studies (66), which demonstrates that, if
the material surface is properly designed, it is
possible to render CNT biocompatible.

GENERATION OF ADVERSE
CARDIOVASCULAR EFFECTS
BY AMBIENT UFP

Epidemiological evidence indicates that PM ex-
posure can induce morbid and fatal cardiovas-
cular events such as atherosclerosis, which can
lead to coronary artery disease, myocardial in-
farctions, and stroke (51, 58). Although this as-
sociation has been most clearly documented for
PM10 and more recently for PM2.5, increas-
ing experimental evidence indicates that ambi-
ent UFPs may pose an even greater health risk
(36). Using our particle concentrator technol-
ogy, we demonstrated that UFPs induce more
atherosclerotic plaque in apoE knockout mice
than does a mixed atmosphere of fine plus ul-
trafine particles (1). Although there are a num-
ber of possible explanations for this finding, we
observed good correlation between the plaque
development and the high content of organic
chemicals on the UFP surface (1). Moreover,
the increased rate of atherogenesis correlated
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with increased evidence of systemic oxidative
stress in UFP-exposed animals. Our hypoth-
esis, therefore, is that UFP-induced oxidative
stress could constitute the principal mecha-
nism by which UFPs induce atherosclerotic
plaque development. Because the atheroscle-
rotic plaque is basically a chronic inflammatory
lesion, there may be synergy between the PM-
induced inflammation and the prooxidative and
proinflammatory effects of oxidized low den-
sity lipoprotein (LDL). We have demonstrated
through a genome-wide analysis that oxidized
LDL components synergize with organic DEP
chemicals in stimulating the expression of ox-
idative stress–responsive genes (18).

How does UFP inhalation lead to oxidative
stress generation at a remote vascular site? One
possibility is that inhaled particles may release
organic chemicals and transition metals from
the lung to the systemic circulation. Another is
that pulmonary inflammation could lead to the
release of ROS, cytokines, and chemokines to
the systemic circulation. The third possibility
is that UFPs could gain access to the systemic
circulation by directly penetrating the alveo-
lar/capillary barrier in the lung (54). Indeed,
some reports in the literature show the systemic
translocation of 99mTc-labeled ultrafine carbon
particles (54) or albumin nanocolloid particles
of <80 nm (56). However, a detailed mechanism
for the inhaled particle translocation remains to
be determined (67).

EXPERIMENTAL STUDIES
LOOKING AT THE EFFECTS
OF ENGINEERED NPs ON THE
CARDIOVASCULAR SYSTEM

Although no human data, to date, show ad-
verse cardiovascular effects of engineered NMs,
the use of these materials for imaging and
therapeutic purposes could pose a health risk.
Limited experimental evidence has emerged
showing that NMs could produce adverse car-
diovascular impacts. Data include reports that
engineered NPs may penetrate the pulmonary
epithelial cell barrier, enter the systemic circu-
lation, and gain access to the cardiovascular sys-

tem (57, 58). Carbon NMs such as MWNT,
SWNT, and carbon black NPs induced human
platelet aggregation in vitro and promoted ar-
terial thrombosis in rats (61). One explanation
is the ability of NMs to increase GPIIb/IIIa ex-
pression on platelets, in addition to activating
signaling pathways involved in platelet aggrega-
tion (61). Nemmar et al. (53) reported similar
prothrombotic effects for CNTs. Intratracheal
instillation of MWNTs in mice triggers mild
lung inflammation, which can induce secondary
platelet activation in the systemic circulation
(53). Platelet activation recruits more leuko-
cytes to form platelet-leukocyte conjugates that
produce secondary procoagulant effects by re-
leasing the tissue factor (53). In contrast to the
prothrombotic effects of CNTs, Zhu et al. (81)
reported that intratracheal instillation of Fe2O3

NPs lengthened blood prothrombin time and
activated partial thromboplastin times in rats,
which suggests that nanoparticles could also
exert anticoagulant effects.

CNTs may promote atherosclerosis (38). A
single intrapharyngeal SWNT instillation in
mice induced oxidative stress in the lung, heart,
and aorta (38). This result was reflected by a
reduced glutathione-to-oxidized-glutathione
ratio (GSH/GSSG) and increased protein
carbonyls in the aorta (38). Chronic exposure
of ApoE−/− transgenic mice to SWNT, while
being fed an atherogenic diet, led to accel-
erated atherosclerotic plaque formation as
well as mitochondrial DNA damage (38). All
considered, while these preliminary findings
indicate that engineered NM may induce car-
diovascular effects, there are no documented
incidences of human cardiovascular disease
due to engineered NM exposure.

HOW DO WE APPROACH THE
TOXICITY OF POTENTIALLY
HAZARDOUS NMs, AND WHAT
CAN BE DONE TO PREVENT
THE GENERATION OF ADVERSE
HEALTH EFFECTS IN WORKERS
AND CONSUMERS?

The experimental effects of some NMs
show that they can induce adverse biological
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responses at cellular, subcellular, mem-
brane, protein, tissue, and organ levels.
The potential for biological injury lies in
the novel physicochemical properties of
NMs as they approach the sub-100-nm
length scale. NMs have a much larger
surface-area-to-volume ratio than do bulk
materials, which means that an increased num-
ber of atoms are exposed at the material’s sur-
face. Quantum effects dominate at this length
scale. As a result, increased surface reactivity
of NMs could facilitate interactions with bio-
logical molecules such as DNA, proteins, and
membranes, which also function as nanoscale
structures. The interactions taking place at the
nano-bio interface could have many conse-
quences, including, but not limited to, oxidant
injury, conformational change, membrane
permeability changes, mutational alteration,
signaling effects, ionic exchanges, biocatalytic
changes, enzyme failure, and new epitope
exposure in the proteins.

The most important NM properties in-
volved in nano-bio interactions include size,
shape, purity, surface area, charge, hydropho-
bicity, state of aggregation, crystallinity, elec-
tronic state, and potential to generate ROS.
These properties may be related to biological
outcomes according to a number of structure-
activity flow diagrams, one example of which
is shown in Figure 1 (45). The integration
of these modules may determine the mate-
rial’s biocompatibility or toxicity. Each type
of material could establish its own structure-
activity diagram, which for a given biologi-
cal substrate means more or fewer interac-
tions based on the material’s physical-chemical
characteristics. The relationship between mate-
rial characteristics and toxicological outcomes
can also be used for the safe design of nano-
materials. Improvements could include chang-
ing or adapting physicochemical characteristics
that decrease cellular uptake or bio-availability,
prevent spread, or decrease injurious biocat-
alytic effects. One example of how these im-
provements can be accomplished is by NP
surface coating with polymers, ligands, and de-

tergents that provide steric hindrance (or block
access) to the particle surface.

A number of the structure-activity relation-
ships can be used to screen for NP toxicity.
Examples are NP interactions with the cell
membrane, cellular uptake, and subcellular lo-
calization (51, 58). Key NM characteristics that
promote particle wrapping at the cell mem-
brane and cellular uptake include size, shape,
charge, aggregation status, surface roughness,
hydrophobicity, and the presence of surface
coatings or surface ligands (51, 58). The sur-
face characteristics can lead to specific as well as
nonspecific binding interactions with the mem-
brane. Receptor-mediated endocytosis is an ex-
ample of the former, whereas the interaction of
surface groups with charged phospholipid head
groups or protein domains is an example of the
latter (24, 34). Particle size is an important de-
terminant of particle wrapping time and cellu-
lar uptake (7). Particle uptake can be studied
by fluorescence and other imaging techniques,
and wrapping time can be quantitatively ex-
pressed by a series of mathematical equations
(7). Subcellular processing can also exert a cru-
cial effect on the biological outcome (51, 78)
(Figure 2). For instance, cationic charge can
lead to lysosomal processing and cytotoxicity
that is premised on the proton sponge hypothe-
sis (78). This theory posits that extensive buffer-
ing by the cationic particle surface may lead
to unchecked proton transport into the lyso-
some. This action could lead to excessive water
influx, which, owing to the space constraints,
could rupture the endosome. Our recent data
show that the toxicity of cationic NPs (60 nm) in
macrophages is premised on the proton sponge
effect, whereas in epithelial cells the same par-
ticles induce a different pathway of toxicity
(Figure 2). These data show that particle sur-
face properties determine cellular uptake path-
ways, subcellular processing mechanisms, and
cytotoxicity.

ROS and oxidative stress provide an impor-
tant screening principle on the basis of con-
sideration discussed earlier in this review. NM
characteristics that promote or contribute to
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ROS generation are (a) photoactivation effects,
e.g., the formation of electron-hole pairs during
UV exposure of TiO2—this effect has been as-
sociated with the generation of oxidative stress
and inflammation by TiO2 (41, 71); (b) discon-
tinuous crystal planes and material defects that
lead to oxygen radical generation owing to the
active electronic state of the material surface;
(c) redox cycling, which contributes to ROS
production. This can occur because of the pres-
ence of transition metals or redox cycling or-
ganic chemicals on the particle surface. UFPs,
for example, contain organic compounds such
as quinones, which can generate ROS through
redox cycling. Moreover, transition metals can
generate hydroxyl radicals through the Fenton
reaction (52). The Fenton reaction is one of
the mechanisms by which metal impurities on
the CNT surface can induce ROS production
(Figure 3). Finally, (d ) particle dissolution
(e.g., ZnO, CdSe, Cu) can produce free ions
that are capable of inducing ROS gener-
ation and toxic effects in cells (1, 9, 43)
(Figure 3). MFF may be an example of this
toxicity.

USING THE OXIDATIVE STRESS
PARADIGM AS A SCREENING
ASSAY FOR NM TOXICITY

NM oxygen radical generation can result in cel-
lular and tissue injury responses such as inflam-
mation, apoptosis, necrosis, fibrosis, hypertro-
phy, metaplasia, and carcinogenesis (51). To use
this paradigm as a screening procedure for NP
toxicity, we have formulated the hierarchical ox-
idative stress model as an integrative method
for testing a wide range of cellular injury re-
sponses. At the lowest level of oxidative stress
(tier 1), the induction of antioxidant and protec-
tive responses is mediated by the transcription
factor, Nrf2, which regulates the activation of
the antioxidant response element in the pro-
moters of phase II genes (35, 79). At higher
levels of oxidative stress (tier 2), this protec-
tive response may yield to proinflammatory
responses because ROS induces redox-sensitive

signaling pathways such as the mitogen-
activated protein kinase (MAPK) and nuclear
factor-kappa B (NF-κB) cascades (79). At the
highest level of oxidative stress (tier 3), a pertur-
bation of mitochondrial inner membrane elec-
tron transfer and the open/close status of the
permeability transition pore can trigger cellu-
lar apoptosis and cytotoxicity. This outcome
is also known as toxic oxidative stress. Using
this three-tier screening platform we com-
pared a number of different materials as well
as variations in the surface characteristics of a
single material to discern between potentially
hazardous or potentially safe NPs (76). Po-
tentially safe NPs (such as carbon black and
polystyrene) induced either no response or only
a tier 1 response, whereas potentially hazardous
NPs (such as metal oxides and ambient UFP)
induce proinflammatory (tier 2) or cytotoxic
(tier 3) effects. We have also shown for ambient
air pollution particles that one can link the hier-
archical oxidative stress paradigm to the in vivo
outcomes in animal disease models, as reviewed
above (2, 18).

Using the oxidative stress paradigm consti-
tutes one of the first examples that could be-
come a predictive screening paradigm for NM
toxicity. By predictive, we mean that an in vitro
manifestation of toxicity translates into an in
vivo toxicological outcome. One example is the
link between the ability of UFP to induce proin-
flammatory effects in macrophages and epithe-
lial cells and to enhance allergic inflammation
in intact animals. The emphasis on predictive
screening paradigms is becoming more impor-
tant as the number of new NMs are expanding
because previous experience in the chemi-
cal industry has shown that it is not cost-
effective or logistically feasible to test all the
compounds (>50,000 industrial chemicals) by
labor-intensive in vivo test procedures. Fewer
than 1000 industrial chemicals have undergone
toxicity testing because of the logistics and high
costs of animal testing. It would clearly be
more effective if we had predictive screening
paradigms that could be used for high content
or high-throughput screening of NMs and
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then used this data to prioritize in vivo animal
test schedules. Recent development in high-
throughput toxicity screening (HTS) proce-
dures makes predictive in vitro testing possible
with fewer associated costs and shorter time-
frames. The National Research Council of the
U.S. National Academy of Sciences (NAS) re-
cently opined that toxicological testing in the
twenty-first century should undergo a paradigm
shift from a predominant observational science
in animals to a target-specific and predictive
in vitro science that utilizes mechanisms of in-
jury and toxicological pathways to guide con-
ductance of in vivo studies (48, 49). This opin-
ion is also compatible with the increased public
demand and regulatory demand to reduce an-
imal use for toxicological screening, e.g., the
recent European Union REACH legislation.
This legislation requires the development of
extensive toxicological testing by ex vivo ap-
proaches. Predictive screening models based on
quantitative structure-activity relationships of
NMs will likely become progressively more im-
portant as the number of new nanoproducts
increases.

CONCLUSIONS
Rapid development of nanotechnology and
commercialization of nanoproducts increases
the risk of human exposure to engineered NMs.
It is imperative to establish a scientific basis for
understanding the toxic potential of these ma-
terials. Studies of the adverse health effects of
ambient air pollution particles, asbestos, and
quartz provide considerable insight into po-
tential NP and nanofiber injury. One of the
principal mechanisms of toxicity induced by
these particles/fibers is the generation of re-
active oxygen species and oxidant injury. It is
likely that nanoparticles with novel physico-
chemical properties may introduce new mech-
anisms of injury. Therefore, it is important to
understand the interactions happening at the
nano-bio interface and identify toxicological
pathways and mechanisms of injury. This un-
derstanding can be used to develop predictive
screening paradigms for NM toxicity. Achiev-
ing this goal requires a paradigm shift from a
predominant observational science in animals
to a screening paradigm that could be used to
prioritize in vivo testing.
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Figure 1
Postulated quantitative structure-activity relationship (QSARs) linking NM properties to biological outcomes. The physicochemical
characteristics of NPs can be divided into overlapping modules as one set of material characteristics that determine surface reactivity,
another set of material characteristics that determine the cellular uptake and subcellular localization, and a third set of material char-
acteristics that determine the interaction with specific cellular compartments or processes. The integration of these modules may
determine the biocompatibility or toxicity of the material (modified from 45).
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Figure 2
Comparison of the mechanisms of cell death induced by cationic NPs. NMs are taken up into cells via endocytosis. In macrophages,
particles are taken up into phagosomes, and the formation of functional nicotinamide adenine dinucleotide phosphate (NADPH) oxi-
dase produces ROS. Cationic particles enter a LAMP-1 positive lysosomal compartment in macrophages and induce lysosomal rup-
ture via the proton sponge effect. A proton pump inhibitor, BFA, interferes in this pathway. Subsequent deposition of the particles in
the cytosol induces an increase in mitochondrial Ca2+ uptake, oxidative stress, PT pore opening, and apoptosis that could be sup-
pressed bycyclosporin A (CsA). In contrast, cationic NPs are taken up into epithelial cells via caveolae, and the uptake and toxicity
could be inhibited by MβCD through cholesterol extraction from the plasma membrane. Cationic NPs also induce Ca2+ increase,
oxidative stress, and mitochondrial damage; however, epithelial cells undergo necrosis. Cells under oxidative stress can typically
induce tiered responses including cell defense (tier 1), proinflammation (tier 2), and mitochondria-mediated cell death (tier 3).
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Figure 3
NM surface properties that generate ROS. The valence and conductance bands of semiconductor NMs can generate electronic states
that lead to the formation of O2

·–, which through dismutation or Fenton chemistry can generate additional ROS. Also, photoactiva-
tion of TiO2 could generate electron hole pairs that generate O2

·– and OH· radicals. Transition metals and redox cycling of organic
chemicals on the particle surface can also generate ROS. Dissolution of the particle surface by releasing metal ions could be particu-
larly relevant to ZnO particle toxicity. These dissolution characteristics could vary with the free surface energy of the particles as well
as the pH of the environment or the cell. Adapted with permission from Reference 39.
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